Immunotherapeutic Potential of Inhibitory KIR/HLA Mismatched Allogeneic NK and gamma-delta T Cells as an HIV Cure Strategy

Serhat Gumrukcu
Seraph Research Institute
Los Angeles, CA, USA

Disclosures:
Enochian Biosciences, Stock and Salary
Frida Therapeutics, Stock
Pyrus Bio, Stock
Introduction

Background

• Despite successful antiretroviral therapies (ART), there is still a need for a cure for HIV.
 • Certain current HIV cure strategies that focus on cellular antiviral responses face challenges including limited antigen presentation, insufficient cytotoxic T cell responses, and immune exhaustion or tolerance.
 • Both natural killer (NK) and gamma/delta (gd)-T cells are innate immune cells known to be important in HIV responses.
 • Antigen recognition is achieved outside of MHC-restriction in these cells, which makes them a safe candidate for allogeneic cell therapies.
• In addition, certain persons with HIV (PWH) cannot tolerate ART, exhaust ART options, choose not to take, or do not have access to, therapy.

Rationale

• Therefore, we hypothesized that KIR/HLA-mismatched allogeneic NK and gd-T cells could be a potential adaptive cell therapy for HIV cure.
Methods

Pre-clinical

• PBMCs were isolated from two ART-controlled PWH and two seronegative KIR/HLA-mismatched individuals.

• gd-T cells were expanded using IL-2 and zoledronic acid.

• NK cells were isolated by negative selection via immunomagnetic separation with CliniMACS.

• HIV target cells were generated from CD4+ T cells from PWH by superinfecting them with HIV\textsubscript{JR-CSF} \textit{in vitro}.

• \textit{In vitro} killing assays were run with 1:1, 1:10, 1:25, 1:50 effector/target cell ratios in co-cultures with allogeneic or autologous NK and gd-T cells and HIV-superinfected CD4+ T cells.

• Same killing experiments were done with latent CD4+ T cells that were unstimulated or treated with latency-reversal agent (LRA) vorinostat (VOR).

• HIV p24 antigen was measured in cells cultures by ELISA and with intracellular staining by FACS.
Clinical

- An IRB-approved single-patient study was conducted on a virally unsuppressed person under combination (c)ART.
- **Patient:** 54yo, male
 - HIV seroconversion 1986
 - History of monotherapy and dual therapies
 - ~2,000 (3.3 log10) copies of HIV RNA under cART
 - ~400 absolute CD4+ T cell count, ~22% CD4+ T cells
- Low dose lympho-suppressive pre-condition regimen for 3 days (day -5 to day -2)
- 25x10^6/kg NK cells and 5x10^6/kg gd-T cells on day 0 from a partially mismatched healthy donor
- Discontinued ART on day -5 and remained off for duration of study
Results

In Vitro

• Allogeneic NK and gd-T cells inhibited HIV replication in superinfected CD4+ cells substantially at 1:1 (94% and 97%) and 1:10 ratio (79% and 84%) compared to autologous cells (69% and 74% at 1:1, 57% and 59% at 1:10)
• Similar results were obtained with VOR-treated latent target cells.
• Unstimulated latent cells co-cultured with either allogeneic cell at 1:1 ratio demonstrated no p24 production after VOR treatment.

Clinical

• There were no grade >2 adverse events or treatment-related toxicity observed in the single-patient study.
• Off ART throughout, after initial increase in plasma HIV RNA, decline began at day 14 and reached pre-intervention levels at day 100. The viral load then rapidly decline to <20 or 20 copies/ml for 225 days
Conclusion

• KIR/HLA mismatched NK and gd-T cells demonstrated superior ability to target HIV-infected CD4+ T cell and suppress HIV viral replication \textit{in vitro} compared to autologous cells.

• KIR/HLA mismatched NK and gd-T cells successfully suppressed HIV replication in LRA-stimulated latent CD4+ T cells \textit{in vitro}, potentially suggesting the mismatched cells’ ability to recognize latently infected cells.

• KIR/HLA mismatched NK and gd-T cell therapy led to an initial increase in plasma HIV followed by persistent virologic control (<20 or 20 copies/ml for 10 months) of HIV in a subject who previously had uncontrolled viremia under ART, without observed toxicity or severe adverse event.

• Studies to investigate the patient’s immunological profiling and anti-HIV immunity are planned and underway.

• Allogeneic NK and gd-T cells present important potential as an HIV immunotherapy and warrant further investigation potentially to achieve functional cure.

• An investigator-initiated IND is being prepared to submit to the FDA.
Acknowledgements

Gumrukcu Lab
Serhat Gumrukcu, MD PhD
Phillip Musikanth, MD
Rachel L. White, PA-C
Tung X Nguyen
Gregory Howell
Adiela Pineda
Kristen Terry

IRCM
California Institute of Regenerative and Cellular Medicine
David Hardy, MD
Mark Dybul, MD
Michael Mendicino, PhD
Barbara Krutchkoff, PhD